Effect of PDC Bit Design on Drilling Trajectories: Modeling and Case Studies in Unconventional Wells

IADD Drill Bit Forum – 03/17/2016

Stephane Menand, Ph.D.

stephane.menand@drillscan.com
Outline of the presentation

- **DrillScan Intro**
- **PDC Bit Modeling**
 - Problem Statement
 - Single-Cutter Modeling
 - PDC Bit model
 - Bit Steerability
 - Walking Tendency
 - Effect of Gauge Length
 - Effect of Rock Strength
- **Application to Directional Drilling**
 - Rock-Bit-BHA Coupling
 - Unconventional Well Example
- **Conclusion**
• Expert Services, Innovative Software Solutions, Trainings for the drilling industry
 – Directional Drilling, Torque & Drag & Buckling, Survey, Casing Wear, Fatigue, Drilling Bit Performance, Drilling Dynamics
• Advanced Modeling Solutions
• Strong collaboration with Research
 – Laboratory Validation & Permanent improvement
• Strong collaboration with Operators
 – Field Validation
PDC Bit

Single Cutter

ROP, RPM

Problem Statement

DrillScan

PDC Bit Modeling

TOB

WOB

Copyright © DrillScan
PDC Bit Modeling

Single-Cutter Modeling

Stress to cut the rock

\[
\sigma_0 = \frac{C_0 + P_b \cdot (\sin(\psi) \cdot \cos(\psi) + \cos^2(\psi) \cdot \tan(\phi))}{(1 - \tan(\theta_f) \cdot \tan(\phi)) \cdot (\sin(\psi) \cdot \cos(\psi) - \tan(\theta_f + \phi) \cdot \sin^2(\psi))}
\]

Cutting Force \(F_c \)

\[F = (\text{DOC, Co, } \varphi, \text{ Friction, Wc, Ws, Chamfer, Pmud, Ppore}) \]

Normal Force \(F_n \)

ROP/RPM

Rock

Bit Design

Mud / Rock

Copyright © DrillScan

SPE 98988
Lab Validation

Atmospheric Test

Pressurized Test

• Effects Studied and Validated:
 – Rock (UCS, Anisotropy)
 – Back Rake, Side Rake
 – Cutter Size
 – Chamfer size and type
 – Cutting Speed
 – …
From Single-Cutter to Full PDC Modeling
PDC Bit Modeling

Simplified & 3D PDC Bit Modeling

Full 3D PDC Bit model

<table>
<thead>
<tr>
<th>Drillability</th>
<th>Durability</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROP, MSE</td>
<td>Cutter Wear</td>
<td>Imbalance Force</td>
</tr>
</tbody>
</table>

Drillability
- **ROP, MSE**

Durability
- **Cutter Wear**

Stability
- **Imbalance Force**
- **Bit Law Friction**

Copyright © DrillScan
Comparisons between the 2 models have shown that the simplified approach is sufficient for Directional Drilling.
High Bit Steerability = High Side-Cutting ability of the bit

Bit Steerability = 5 - 50% for most PDC Bits
Effect of Gauge Length on Bit Steerability

![Image showing bit and gauge length relationship]

- **Gauge Length** vs **Bit Steerability (%)**

Graph Details:
- **Lab Results**
- **Model**

Data Sources:
- SPE 74459, PA-82412, 79795, PA-87837, 110432, 151283
Effect of Gauge Length on Bit Walk Angle

Tan (12 deg.) = 0.21 >> Coefficient of friction steel-rock

Generally speaking: if the coef. Of friction ↑ Bit Walk ↑ Turn Rate ↑
Effect of Rock Hardness

Higher Side-Cutting in a Soft Formation
PDC Bit Modeling

BHA / Bit / Rock Coupling

Bit Specs ➔ PDC Bit Model ➔ Bit Steerability Walk Angle

Copyright © DrillScan
Directional Drilling

BHA / Bit / Rock Coupling

Rock-Bit model + BHA model

SPE 74459, PA-82412, 79795, PA-87837, 110432
Required Data:

- Well Trajectory
- **BHA details**: ID, OD, Bend angle & position, Stabilizers, etc…
- **PDC bit specs**: Gage length, Bit Profile
- **Sliding/Steering sheet**: TFO, slide/rotate, activation level (RSS)
- Mud weight
- **Operating Parameters**: WOB, RPM
- **Rock**: Unconfined compressive strength (UCS)
Directional Drilling
Case Study: Unconventional Well

- **Rock**
 - UCS = 5000 psi

- **8 ½ in. PDC Bit**
 - Various Gauge Pad Lengths
 - Walk angle = -12 deg.

- **BHA**
 - Slick Assembly. 1.5 deg. bend
 - Stabilized Assembly 1.5 deg. bend

- **BHA modeling**
 - Lateral
 - Bit Gauge Length to have a neutral BHA?
Directional Drilling
Case Study: Unconventional Well

Slick Assembly

Rotary Mode
Build Rate Calculation
Inclination = 90 deg
Hole Overgage = \(\frac{3}{4} \) inch
Mud Weight = 10 ppg
WOB = 20 klbs
Stabilized Assembly

Case Study: Unconventional Well

Rotary Mode

Build Rate Calculation

- Inclination = 90 deg
- Hole Overgage = 3/4 inch
- Mud Weight = 10 ppg
- WOB = 20 klbs
• **PDC Bit Modeling**
 - Cutter-Rock Interaction is key in PDC Bit modeling
 - Development of full detailed 3D PDC model
 - Drillability, Durability and Stability
 - Simplified PDC Bit model to quantify the directional behaviour of the drilling bit

• **Directional Drilling**
 - Bit Gauge Length Affects significantly BUR
 - Bit Selection is key to make the BHA neutral in the lateral section
Thanks for your attention. Any questions?