ERD Hole Cleaning
Best Practices
Speaker Information

- Meghan Paulson
- Engineering Manager
- November 1, 2017
- K&M Technology Group
Introduction

– K&M Technology Group
– 18 years in Oil & Gas (Drilling & Completions)
– Dalhousie University (TUNS); BSc. Civil Engineering
– University of Rhode Island; MS Ocean Engineering
– Based in The Woodlands, TX
– Specialized in
 • Extended Reach Drilling
K&M Technology Group

- Extended Reach, Horizontal and Complex Well Consulting Group

- Provide support to our clients through:
 - Engineering Studies
 - Industry Training (Private & Public)
 - Wellsite Services
 - Software Rentals
Outline

- Why is Hole Cleaning Important?
- Hole Cleaning Environments
 - Laminar Flow
 - Turbulent Flow
- BHA: Rules of Thumb
- Common Unconventional Issues
- Hole Cleaning Success (Hint: It takes some planning!!)
Bad Hole Cleaning: When is it a Problem?

- Trips
 - Overpulls
 - Stuck Pipe
 - Packoffs
 - $$$
Bad Hole Cleaning: When is it a Problem?

- High friction when running casing
- Extra time washing/reaming
- Setting Casing in buckled state
- Not reaching TD

5½” Casing Run

Excess drag/friction due to poor cleanup
Hole Cleaning: Distinction Required!

- **Laminar Flow**
 - Drilling With MUD
 - Lower “Energy” environment
 - Fluid flow concentrates on high side (away from pipe AND cuttings)

- **Turbulent Flow**
 - Drilling with Brine
 - Small annular spaces
 - High “Energy” environment
 - Fluid does not concentrate on high side

- How do we know which environment? MODEL it!
Hole Cleaning: Distinction Required!

- 6\(\frac{1}{8}\)" Hole
- 4" Drill Pipe

- 9.0 ppg Brine
- Fann Readings:
 - 1.3/0.6/0.4/0.2/0/0
Hole Cleaning: Laminar Flow

- Cuttings on Low Side of Hole
- Fluid Flow on High Side of Hole
 - Even Sweeps!
- Need Energy!!
Hole Cleaning: Laminar Flow

- Additional Energy
 - RPM
 - Annular Velocity
 - Fluid Rheology
 - Multiple Circulations

- How Much?
 - 70-80 RPM
 - 200’/min AV
 - Fann 6 rpm reading:
 - 0.8-1.0 * Hole Size (in)
 - Depends on Lateral Length
Hole Cleaning: Turbulent Flow

- Pretty Easy!
- Stay in Turbulent Flow!!
 - Additives can add viscosity
 - Even Sweeps!
- Be aware of Geometry
 - What is your AV downhole?
 - What is your AV in vertical?
- How long to Circulate?
 - 2 BU Should be good!
 - (Check the shakers…)
 - Good Idea to Circulate another BU at EoC (OK to pump sweep here….)
Hole Cleaning: How Clean is Clean Enough?

- What is your next activity?
 - Trip out to pick up new BHA?
 - Trip out to run casing?
 - Trip out to FLOAT casing?

- Be Aware!
 - Even with good hole cleaning: some cuttings remain
 - When tripping out and it pulls tight.....always assume it is cuttings!
 - STOP, DROP & ROLL
Hole Cleaning: BHA interaction with cuttings

- This is how “tight hole” is often visualized....

- BUT....we forget that there is some “dirt” on the low side
Hole Cleaning: BHA interaction with cuttings

- Dirt on low side of hole should flow around BHA components
- BUT...poorly chosen BHA components can BLOCK the flow.....

If this component blocks the flow of dirt, then tight hole looks like this ...
Hole Cleaning: BHA interaction with cuttings

- **BHA “Flow By Area”**
 - 25% - 30% of Hole Size
 - IBS vs. Sleeve Stabilizers

- **BHA Tortuosity**
 - Must pass “Daylight” Test
Hole Cleaning: Common USL Issues

- **Not enough RPM**
 - Too High Motor Bend
 - Fatigue concerns
 - RSS run with “motor assist”
 - Motor too fast so string RPM is limited
- **Not enough Time**
 - Limiting circulations prior to tripping
 - After TD AND unplanned trips
 - Tool wear / vibration concerns with high RPM off bottom
- **Changing Flow Regime**
 - Fluid Becomes Viscous “Enough”
 - Lubricants
 - Frequent Sweeps
Hole Cleaning: Common USL Issues

- Issues “Blamed” on Hole Cleaning
 - Wellbore Instability
 • This is “dirt generation” problem
 • This is (usually) a mud weight solution!
 - Drill string buckling
 • Time spent (wasted) on excessive hole cleaning
- Model it!
Hole Cleaning Success

- **Understand the Flow Regime**
 - Model it! Before & During Drilling

- **Focus on BHA**
 - Motor Bend Settings
 - Motor Speed
 - Stabilization
 - Design to Minimize Vibrations
 - (On AND Off Bottom)

- **Focus on Fluids**
 - Either laminar or turbulent
 - Frequently measure fluid rheology
Hole Cleaning Success

- **Budget the TIME**
 - Set the expectation for all that time will be spent circulating before tripping
 - How much time does an extra BU take?? How much time does stuck pipe cost??

- **Check the Shakers!**
 - Circulate until shakers are clean + 1 additional bottoms up

- **Laminar Flow**
 - STOP Pumping Sweeps (Please?!)

- **Turbulent Flow**
 - Monitor the viscosity! Keep the flow turbulent (or accept that you are laminar and need to add energy….)
Conclusion
Thank You